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Figure 1: The AuRea system being used by a pair of participants in what we describe as the ‘Validation’ task. Left: the participant
with access to AuRea via an HMD (the decoder ) observes its counterpart, wired to an ECG, watching a film clip (the encoder ). Here,
the goal of the decoder is to guess the emotional state of the encoder. Right: the feedback from AuRea as seen by the decoder.

ABSTRACT

The Empathy-Effective Communication hypothesis states the better
a speaker can understand their listener’s emotions, the better can
they transmit information; and the better a listener can understand
the speaker’s emotions, the better can they apprehend the informa-
tion. Previous emotional sharing systems have managed to create
a space of emotional understanding between collaborators on re-
mote locations using bio-sensing, but how a context of face-to-face
communication can benefit from biofeedback is still to be studied.
This study introduces a new Augmented Reality communication cue
from an emotion recognition neural network model, trained using
electrocardiogram physiological data (AuRea). The proposed de-
sign is meant to facilitate emotional state understanding, increasing
cognitive empathy without compromising the existing verbal, non-
verbal, and paraverbal communication cues. We conducted a study
where pairs of participants (N=12) engaged in three tasks where
AuRea was found to positively affect performance and emotional
understanding, but negatively affect memorization.

Index Terms: Human-centered computing—Collaborative and
social computing—Empirical studies in collaborative and social
computing; Human-centered computing—Human computer interac-
tion (HCI)—Interaction paradigms—Mixed / augmented reality

1 INTRODUCTION

Recent advances in bio-sensor research towards human-computer
interaction have facilitate the use of these devices in everyday situa-
tions, beyond lab environments, as they shrink in size and increase
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in reliability. Much of this research has centered on developing
continuous physiological measurements for healthcare monitoring
via wearable and noninvasive devices. Commercial wearables such
as Fitbit1 already provide reliable information on sleep quality by
measuring body acceleration, and on stress recognition by measuring
electrodermal activity [4,11,12,29]. This with the goal of informing
users about their behavioral patterns and how real-world situations
affect their emotional state so they can better manage them.

These modern sensors have enabled research on emotional shar-
ing through visualizations of physiological data that has been shown
to affect communication, interconnection, and collaboration. They
have the potential to enable new communication cues that expand on
the verbal, nonverbal, and paraverbal cues we tend to rely on to infer
another’s emotional state, and in turn to allow us to better adapt our
own posture or speech to better match our counterpart’s needs – in
sum, to promote more effective communication [18, 35]. Further,
emotional sharing might better enable mirrored emotions, known as
emotional contagion, which has been shown to lead to interconnec-
tion between collaborators. These emotions promote actions towards
a common goal and positively impacting task performance [2]. Both
interpersonal emotional understanding and emotional contagion are
processes that describe an empathic experience.

Projects on emotional sharing have explored various visualiza-
tions of one’s emotional state: from sharing biosignals via a smart-
watch [18] or ambient light [33], to augmenting video calls with
stress indicators [35], to adding an animated plot of someone’s
heart rate to a transcripts [19]. But while these demonstrated higher
emotional understanding and emotional contagion, they are not en-
tirely suited for mobile settings and face-to-face communication as
they can limit access to existing communication cues such as facial
expressions, posture, voice tone, or gaze. A device with a more
appropriate form factor are augmented reality (AR) smartglasses,
but research in this area has primarily focused on proof-of-concept
prototypes [28] or on assessing collocated task performance [7].

1Fitbit: https://www.fitbit.com/global/us/technology/stress
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As such, this paper starts to fill this gap by exploring emotional
sharing in AR-supported face-to-face exchanges. We use bio-sensing
to (i) enable a communication cue inferred from an emotion recog-
nition system trained with electrocardiogram (ECG) data; and (ii)
present a user study between pairs of participants across from each
other and in which one of them has access the physiological data
of the other via color-coded AR feedback (Fig. 1). We hypothesize
that this will: (H1) increase emotional understanding; (H2) improve
the transmitting of information; (H3) improve the apprehension of
information; and (H4) increase interconnection.

2 RELATED WORK

Researchers have explored the potential of adding bio-signals to the
already existing communication cues that play a role in empathic
connection (e.g. facial expressions, eye-gaze, and voice pitch) and
studied their impact on empathy and collaborative and social tasks.

The MoodLight by Snyder et al. [33] and the GER Mood
Sweater2 mapped user’s arousal levels to color hues and displayed
this information via ambient lights or color-changing garments. The
former described a two-user setting where both users’ arousal levels
contributed to the ambient light. This positively affected collabora-
tion via self-revelation, but introduced a feedback loop where users
would be too aware of their own emotional states.

Digital representations of physiological data is another popular
research strand in this domain. Researchers have predominantly
focused on sharing heart rate visualizations, which tend to be asso-
ciated with underlying emotional and psychological states. Liu et
al. [19] demonstrated that providing an animated graph with heart
rate information on transcriptions increased emotional perspective-
taking and empathic concern towards members of a stigmatized
group. Liu et al. later developed the Animo [18] system, that al-
lowed users to share their bio-signals voluntarily with each other via
a smartwatch app. Users reported that the bio-signal information
created new insights into their counterpart’s context and prompted
discussions about each other’s emotional states.

The studies above offer important insights into the potential in-
crease of empathy resulting from different types of emotional cue
sharing, but some also can also lead to ambiguous interpretations.
For example, by sharing unprocessed signals like heart rate [19],
these systems ultimately task users with attributing meaning to infor-
mation that does not always have a direct link to affective states. For
example, the same heart rate reading can mean the person is angry or
happy. Others focus on remote communication, and could not easily
support face-to-face scenarios as they require the user to look away
from the person they are talking to (e.g., to look at the visualization
on their smartwatch [18]) and miss on typical communication cues
to the same effect such as facial expressions .

Tan el al. [35] addressed some of these problems in the context of
remote video-mediated assistance. Users had access to cues beyond
pure physiological signals, such as video animations and sound,
which they could access concurrently. The work found that dis-
playing the heart rate information representation of the worker in
the field lowered the workload and the stress of both the instructor
and the worker, and increased task engagement for both parties. In-
structors were observed engaging in fewer task-irrelevant cognitive
interferences, suggesting that the biofeedback visualizations allowed
them to spend more time focusing on the task at hand. Ultimately,
this study presented key findings supporting the Empathy-Effective
Communication hypothesis, and illustrated an approach that effec-
tively preserved verbal, nonverbal, and paraverbal cues in remote
communications. It demonstrated that a system that augments live
communication cues instead of attempting to replace them can be
beneficial to users.

Inspired by these efforts, we expand on the previous approach by
presenting the first emphatic AR system that provides an emotional

2GER Mood Sweater: https://sensoree.com/artifacts/ger-mood-sweater

Figure 2: AuRea’s color model with three emotions mapped to each
quadrant of valence and arousal of Russell’s model of affect [30].

state feedback visualization based on raw physiological data for
in-situ face-to-face communication. We describe this as AuRea, and
validate our approach via a user study that explores its effects on
collaboration performance and interpersonal connection.

3 THE AUREA SYSTEM

AuRea is an AR system for emotional sharing during face-to-face
interactions. In order to be able to accurately classify various emo-
tions from physiological data, we conducted a user study where we
recorded electrocardiogram data from 21 subjects while watching
emotional film clips. This data was then used to train a deep neural
network (DNN) regression model, together with the participants’
self-reported values of valence and arousal. The predicted emotion
from the regression model was mapped to a hue and brightness ac-
cording to a validated color model, and the resulting color effect was
displayed in AR as ripple effect around the user’s head (Fig. 1).

3.1 Emotion Recognition Model
3.1.1 Apparatus
Physiological data captured using a BITalino board 3 with an ECG
sensor. This operated at 1000Hz, using three electrodes, following
a Einthoven’s triangle lead-II placement [10]. The physiological
signals were transferred wirelessly via a Class II Bluetooth v2.0
module to a desktop computer running the OpenSignals software4.

3.1.2 Participants
We recruited 21 participants (13 identified as women and eight as
men), between 20 and 29 years of age (M = 24.90 SD = 2.20). Par-
ticipants described having no cardiac problems and no diagnosed
daltonism. Because this experiment took place during the COVID-
19 pandemic, only participants who had received both doses of the
vaccine at least two weeks prior to the start of the study were in-
vited to participate. Finally, A list containing the American Motion
Picture Association film ratings for the clips depicting mature con-
tent and their official content warnings was provided as part of our
study recruitment invitation. Participation was voluntary and no
compensation was provided.

3https://bitalino.com/products/plugged-kit-dual-mode-ble-bt
4https://biosignalsplux.com/products/software/opensignals.html
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3.1.3 Procedure
Upon arrival, participants were informed that they would watch vari-
ous short clips lasting approximately two minutes and that, after each
clip, they would report on their emotional state by filling out a ques-
tionnaire. They were encouraged to report on their actual feelings
instead of what they believe they should have felt while watching
the clip. Before starting, participants filled in both the Questionnaire
of Cognitive and Affective Empathy (QCAE) [27], which assesses
cognitive and affective empathy, and a custom emotion-to-color
mapping questionnaire (described in detail below). Next, ECG elec-
trodes were placed by participants on their bodies using a reference
figure, and the signal was checked for any interference or incorrect
electrode placement. Over-ear headphones were provided, the lights
were dimmed, and videos played on a 21.5” HD monitor. Due to the
COVID-19 pandemic, the researcher wore a mask during the study
sessions. All equipment was thoroughly disinfected in-between ses-
sions, and the experiments took place in an otherwise empty and
well-ventilated room.

3.1.4 Metrics (Participant Self-Assessment)
After watching each film clip, participants provided a self-
assessment of their emotional state via a 9-point version of Self As-
sessment Manikin (SAM) scales measuring arousal (calm to aroused)
and valence (negative to positive) [3]. They also mapped the clip to
an emotional label, and were asked by the researcher if they had seen
the clip in question before. The list of emotional labels contained
three labels from each quadrant. The first quadrant (positive valence,
high arousal) or (+V, +A) contained the labels ‘Happy’, ‘Excited’,
and ‘Aroused’. The second quadrant (-V, +A) contained ‘Frustrated’,
‘Annoyed’, and ‘Tense’. The third quadrant (-V, -A) contained ‘Sad’,
‘Bored’, and ‘Tired’. And the fourth quadrant contained the labels
‘Sleepy’, ‘Calm’, and ‘Content’. These labels are part of the Rus-
sell’s circumplex model of affect [30] and were chosen as they can
cover a wide range of theoretical levels of arousal and valence, and
because they can be used describe various face-to-face contexts.

3.1.5 Task (Emotional Film Clips)
We used 19 clips in total that mapped to quadrants of valence and
arousal from Russell’s circumplex model of affect. Nine were chosen
from the FilmStim database by Schaefer et al. [32] representing
emotions relevant to collaboration and social interaction such as
sadness or anger: three clips mapped to neutral valence and neutral
arousal (V, A), two to (-V, +A), two to (-V, -A), and two clips
mapped to (+V, +A). Ten additional clips were chosen by us to
represent relevant emotions not covered in the FilmStim database
such as excitement, stress, or calmness. The latter mapped to an
underrepresented valence and arousal quadrant in the FilmStim
database: (+V, -A). Our ten custom clips mapped to these quadrants
as follows: four clips mapped to (+V, -A), two to (-V, +A), two
to (-V, -A), and two clips were mapped to (+V, +V). We followed
Schaefer et al.’s protocol regarding how these clips should be edited,
and we used scenes from movies and TV shows such as Marley &
Me, Mystic River, or Brooklyn Nine-Nine.

Participants watched these clips following Schaefer et al.’s proto-
col: they never watched two clips targeting the same valence consec-
utively; the order of the clips in each quadrant was randomized; the
valance of the first clip was counterbalanced between participants;
and before each clip participants completed a 20 s breathing exercise
to minimize stimuli effects across clips.

3.2 Color Model
At the start of the study, participants performed an emotion-to-color
mapping between the 12 emotional labels (three labels per quadrant)
and 12 colors. These were the primary, secondary and tertiary colors
of the Red-Yellow-Blue (RYB) color model, seen in Fig. 2. Different
emotions could be mapped to the same color, and the order in which

Table 1: All 29 features extracted to build AuRea’s emotion recognition
model. 10 features were selected for predicting angle (bold), and 10
for distance (underlined) across the valence-arousal axis.

Domain ECG Feats Statistical Feats
Signal min, max, mean, var

HRV

RMSSD, MeanNN, SDNN,
SDSD, CVNN, CVSD,
MedianNN, MadNN, IQRNN,
pNN50, pNN20

Time

HR BPM
Frequency HRV VLF, LF, HF, VHF, LF/HF

Poincaré plot SD1, SD2, SD1/SD2
Non-Linear

EDR min, max, var, mean, RSPrate

Table 2: The error measured for angle and distance prediction per
quadrant (valence-arousal) of AuRea’s emotion recognition model.

Angle Distance
Quadrant MAE RMSE MAE RMSE

1 36.12 50.80 0.61 0.80
2 20.85 28.42 0.62 0.93
3 24.98 30.81 0.87 1.60
4 23.24 31.93 1.07 2.51

these emotional labels were presented to participants was random-
ized. Emotion-to-color models have been widely used in human
emotion research, mostly based on The Plutchik’s Wheel of Emo-
tion [25]. This considers eight primary opposing emotions (e.g., joy
and sadness) and maps these to a primary or secondary color. More
recent works have continued to explore the relationship between
emotions and color (e.g., [23]). We used the RYB color instead of
the more commonly used RGB because the former features more
prominently the yellow and red colors. We presumed participant’s
emotions would range from (+V, A) to (-V, +A), which mapped to
yellow and red colors in the theoretical models, respectively.

Based on the results from participant’s responses, warm colors
were used to represent high arousal emotional states from the labels
in the first (87% of responses) and second quadrants (85%). Cool
colors were used to represent low arousal emotional states from the
third (79%) and fourth quadrants (86%). Overall, these results are
aligned with Plutchik’s mapping. As such, we adopt the latter’s use
of brightness – our final color model can be seen in Fig. 2.

3.3 Regression Model
We relied on the NeuroKit 2.0 Python packages [21] and the
BioSPPy [6] for all ECG processing. Regarding the self-reported
answers for valence and arousal, these were translated into polar co-
ordinates following the emotion-recognition model proposed by Han
et al. [13]. Each self-reported pair of valence and arousal was con-
verted into (ϕ,Θ), {ϕεQ | 0≤ ϕ ≤ 3} and {ΘεN | 0≤Θ≤ 360}.
3.3.1 Pre-processing
Even though participants were instructed to stay still, the ECG signal
still suffered from common noise. The ECG signal pre-processing
procedure consisted in applying a IIR 3rd-order Butterworth band-
pass filter between the 2 to 45Hz frequencies [5]. This was done
to mitigate the effects of baseline wander caused by the partici-
pants’s breathing or body movements, and power-line interferences.
For QRS complex detection, we used the Pan–Tompkins algorithm
which squares the signal to delineate the QRS signal contribution
and apply adaptive thresholds for the each peak [24].

3.3.2 Windowing
As the system is intended for real-time emotion detection, we opted
to employ the Ultra-short-term protocol by Salahuddin et al. [31]
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and a window of 60 s for the analysis of time and frequency domain
features such as heart rate (HR), RMSSD, and heart rate variabil-
ity (HRV). If the latest 60 s included body movement or electrode
misplacement artifacts, this was discarded.

3.3.3 Feature Extraction, Normalization, and Selection
A total of 29 features, listed in Table 1, were extracted from 60
samples. The feature normalization process was performed per par-
ticipant, in order to normalize participant data to the rate of change
in physiological reaction. All samples relating to self-reported states
of emotional neutrality were used as the personalized baseline for
each participant (i.e., clips that participants mapped to a neutral
emotional label). Every feature was then normalized to the rate of
change from the baseline:

ui j = ((xraw)i j− (wbaseline)i j)/(wbaseline)i j (1)

where ui j represents the normalized ith feature value for the jth
participant, (xraw)i j the input feature value, and (wbaseline)i j the
feature value measured on the baseline samples.

3.3.4 DNN Architecture
With the dataset ready for training, two supervised DNNs were cre-
ated to predict the two polar coordinates dimensions: one for angle
prediction and other for distance to center prediction. The DNNs had
two hidden layers, constructed by repeated experimental training:
the input layer had 10 neurons (the size of the feature vector), the
first hidden layer had six neurons, and the second hidden layer had
three neurons. The output layer had the one neuron needed for a
regression model. The activation function used was the Rectified
Linear Unit with a Root Mean Squared Propagation optimizer. We
trained the model using a learning rate of 0.001 and a validation split
of 0.2, and using a batch size of 32 for prediction.

3.3.5 Results
The robustness of the system was evaluated using 10-fold cross-
validation. First we calculated the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) for each polar coordinates
dimension on the overall predictions. Afterwards, the predictions
were divided by the four quadrants and each quadrant’s MAE and
RMSE was calculated. The predictions were then converted to labels
of their predicted quadrant and an accuracy score per quadrant was
calculated. Converting the angle and distance predictions into a two-
dimensional point on the valence-arousal axis, the model reached
a MAE of 1.22 and a RMSE of 2.04. Angle prediction had an
overall MAE of 23.24 and RMSE of 31.92, and distance prediction
had an overall MAE of 0.77 and RMSE of 1.320. The highest
overall quadrant accuracy was 70.79%, with 0.72 of precision, 0.71
of recall, and a f-score of 0.70. The best results for the quadrant
specific evaluation metrics can be seen on table Table 2, and the
confusion matrix for quadrant classification can be seen in Fig. 3.

The results of the developed emotion recognition model did not
reach the state-of-the-art standards of similar models using ECG
data. Self-supervised learning models have achieved 82.78% [17] of
accuracy in a four-quadrant classification problem. Chen et al. [8]
achieved 82.63% and 74.88% accuracy for valence and arousal, re-
spectively, using fusion of long short-term memory networks and,
in Zhang et al. [36], an accuracy of 92% for a four-quadrant classi-
fication problem was achieved, using a combination of K-Nearest
Neighbors algorithm with a Max-Min Ant System feature selec-
tion. The 70.79% of accuracy achieved on the developed model was
deemed appropriate to its experimental purpose.

3.4 The AuRea System Architecture
In order to enhance empathic experiences in face-to-face commu-
nication, we propose the Empathic AR system or AuRea: an AR
system that presents a colorful representation of physiological data

Figure 3: The confusion matrix for the arousal-valence quadrant
classification of AuRea’s emotion recognition model.

acquired from a single-lead ECG sensor. AuRea aims to add an
emotional cue to the verbal, nonverbal, and paraverbal cues that
already play a role in the encoding and decoding of emotional states
between people. It was developed for a two-user setting, where one
user is connected to ECG sensors that send physiological data to a
processing pipeline that predicts a point on a two-dimensional model
of valence and arousal, as described so far. The user’s counterpart
is equipped with an HTC VIVE Pro Eye headset5 and a ZED Mini
camera6 that enable an AR video see-through experience. This is dis-
played with a resolution of 720p in order to achieve a performance of
60 frames-per-second (FPS) with a Field-of-View (FOV) of 90º (H)
× 60º (V). This enables the wearer to naturally observe the person
in front of them and important communication cues such as body
posture or facial expressions, and for AuRea to display its emotional
feedback inferred from the ECG data: a color-coded ripple effect
that surrounds the body of the person in view.

AuRea identifies each pair of users as follows: the encoder is
the one that expresses or is associated with an emotional cue (i.e.,
it is the one connected to the ECG sensors); the decoder is the one
that attemps to interpret the emotional cue displayed (i.e., the one
equipped with the AR headset). For stability during the user study
we will describe next, AuRea’s ripple effect uses an ArUco marker7

placed on the wall behind the encoder for positioning in 3D space,
but is designed as a 2D billboard with camera position alignment.
To preserve the communication cues of the encoder, it was used a
stencil buffer placed on the same plane as the billboard, with the
shape of the human upper-body (Fig. 1).

The data from the encoder’s ECG sensor is sent via Bluetooth
using the OpenSignals’ Lab Streaming Layer to a desktop com-
puter. This processes the data with the regression pipeline detailed
earlier, using the same 60 s segment but sliding the window every
2 s, discarding the initial 2 s of the window, and adding the signal
points from the most recent 2 at its end. 2 s were used because the
intelligent model takes around 1.8 s to complete its pipeline. The
model outputs the polar coordinates predicted (angle and distance)
and sends the two values to a second computer by a crossover LAN
wired connection, using the a TCP/IPv4 protocol. The second com-
puter receives the values on the Unity programming environment8

and converts the polar coordinates into hue and brightness, according
to the color model we described above. The predicted angle and
distance to the center of the valence-arousal axis were also coded as

5HTC Vive Pro Eye: https://www.vive.com/us/product/vive-pro-eye/
6ZED Mini camera: https://www.stereolabs.com/zed-mini/
7ArUco marker: https://docs.opencv.org/4.5.3/d9/d6a/group aruco/
8Unity programming enviroment: https://unity.com/
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the velocity of the ripple affect: higher arousal is represented by a
faster ripple effect. This second computer was used solely for the
sake of performance during the user study we describe next.

4 USER STUDY

The evaluation of AuRea took place across three tasks in a face-to-
face setup between pairs of participants. Beyond system validation
of the AR ripple effect, this study explored its effects on self-reported
metrics of interconnection, cognitive load, engagement, worry, and
distress, and on quantitative metrics of performance.

4.1 Participants
We recruited 12 participants (six identified as women and six as
men), between 20 and 29 years of age (M = 24.33 SD = 1.70). All
took part in the first study and their data was part of the training of
the regression model. This was also done to mitigate a confounding
factor on self-perceived empathy: only participants with cumulative
QCAE scores inside the interquartile range were considered (cap-
tured in the first study). The 12 participants were divided in six
pairs. To mitigate further confounding factors, pairs were equally
characterized by gender (female-female, male-male, and female-
male pairs) – to minimize known gender differences in empathic
disposition [9] – and by familiarity (three pairs of participants had
never met before the experiment). The latter was further defined via
the Inclusion of Other in the Self (IOS) scale, a tool commonly used
to measure perceived inter-personal closeness [1].

4.2 Procedure and Metrics
Upon arrival participants placed the ECG sensors on their bodies as
they had done before in the first study. Both participants watched a
2-minute video of a television weather forecast while their physiolog-
ical signals were recorded and pre-processed [34], and the features
for our model’s baseline were extracted – effectively establishing an
emotionally neutral physiological baseline. We followed the same
COVID-19 precautions as in the previous study, thoroughly cleaned
the equipment when participants swapped roles at the end of each
task, and added plexiglass between the pair of participants.

4.2.1 Task 1: ‘Validation’

As illustrated in Fig. 1, the encoder was given headphones and was
asked to watch a film clip from the FilmStim database [32]. Af-
terwards, both the encoder and the decoder were asked to provide
an assessment of emotional state using SAM scales of valence and
arousal as they had done in the previous study. The encoder reported
on its own emotional state, while the decoder reported on the emo-
tional state of the encoder as they had perceived it. The encoder was
instructed to watch the video naturally, without over-reacting. As
this served as the habituation task, the decoder was allowed to con-
sult a printed figure of our color model at any point. While providing
their assessment of the encoder’s emotional state, the decoder was
also asked to rate (from 0 to 100) the effect of the AuRea system
in their assessment (in comparison to other available cues, such as
facial expressions). Each encoder watched two clips in a random
order: one with a negative and another with a positive valence.

4.2.2 Task 2: ‘Pattern Blocks’

As illustrated in Fig. 4, at the start of the task the decoder was given
one figure out of four (selected at random). Each figure represented
a tangram of equal difficulty (i.e., same number of pieces and rep-
resenting an animal that was easy to recognize). The decoder was
told they could not show the figure to the encoder, but instead had to
instruct them on how to build the tangram. 24 wooden pieces were
place in front of the encoder, inside a box, that hid them from the
decoder. There was no time limit to this task, and participants were
instructed to speak freely to one another. We assessed participant

Figure 4: A screenshot from the perspective of a decoder in our
second task (‘Pattern Blocks’). In this task, the decoders were handed
an image of a tangram they had to convey to the encoders so that
they could recreate it using wooden blocks. The decoders could not
see the encoders’ progress, only their natural and augmented cues.

performance (task duration and tangram correctness), interconnec-
tion (ratio for pre- and post-task IOS questionnaires), perceived
cognitive load (the NASA-TLX [14]), and engagement, distress, and
worry (ratio for pre- and post-task Short Stress State Questionnaires,
SSSQ [15]).

4.2.3 Task 3: ‘Storyteller’
This task is based on an experiment by Ramsberger et al. [26]
that measures transactional success in conversations. The encoder
was asked to watch a 2-minute video and retell its events to the
decoder with as much detail as possible. The decoder had to be
able to confidently re-convey this story, and was free to engage in
a semi-structured conversation with the encoder to extract as much
information as needed (no time limit was imposed). This task is
at the core of social empathic interactions, where participants have
to co-construct meaning out of verbal, nonverbal, and paraverbal
cues that can positively or negatively affect these interactions (e.g.,
how the voice tone or body posture affects the meaning of a word or
idea). We assessed participant performance during these interactions,
interconnection (ratio for pre- and post-task IOS questionnaires),
and the perceived cognitive load (the NASA-TLX).

4.3 Experimental Design
The user study primarily followed a within-subject design with a
single independent variable: the use or not of the AuRea system
(counterbalanced across sessions). The first task was only executed
in the AuRea condition, and tasks were always completed in the
order they are presented above (one to three).

5 RESULTS

In the following sections, the results from the participants’ responses
to the various questionnaires and open-interviews, and the tasks’
quantitative metrics are detailed. Statistical tests were performed
using the IBM SPSS v26.

5.1 System Use and Accuracy
We asked participants in the first habituation task to report on a
scale from 0 to 100 the importance or use of AuRea while assessing
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the encoder’s emotions, compared to relying on traditional face-
to-face communications cues. Participants reported a mean value
of 59.58 (SD = 29.85). We then compared decoders’ accuracy by
comparing the cumulative MAE of their valence and arousal reports
and encoders’ self-assessments. Two groups were created, those
who reported a predominant use of AuRea (≥ 50) and those we
relied on more natural cues (< 50).

A paired samples t-test found significant differences in accuracy
between these two groups use (t(5) = -2.712, p = .042): trials with a
predominant use of AuRea achieved a smaller MAE (M = 1.67, SD
= 0.82) than trials with predominant use of natural communication
cues (M = 3.33, SD = 1.03). Further, no significant differences were
found in accuracy for familiarity (t(11) = -.233, p = .820) or for
groups with a predominant use of AuRea across familiarly levels
(t(11) = -.991, p = .343).

5.2 Effects on Performance
Paired samples t-test were performed across the ‘Pattern Blocks’ and
‘Storyteller’ tasks, comparing the performance of pairs of users with
AuRea and without (baseline) – Fig. 5.

5.2.1 Task 2: ‘Pattern Blocks’
Participant performance in the ‘Pattern Blocks’ task was measured
as the ratio of correctly placed pieces / total number of pieces,
AuRea had a positive effect on performance (M = .95, SD = .10)
when compared to the baseline (M = .79, SD = .19): t(11) = -3.80,
p = .003. No significant differences were found for task duration
between the AuRea condition (M = 258 s, SD = 127) and the baseline
(M = 215 s, SD = 124): t(11) = -.851, p = .413.

5.2.2 Task 3: ‘Storyteller’
Participant performance in the ‘Storyteller’ task was measured as
the ratio of the correct number of key ideas the decoder was able
to retell by the number of key ideas the encoder retold from the
video. A video had 30 key ideas compiled by the researcher, who
then match them to a transcription of these interactions. We found
that AuRea had a negative effect on performance (M = .61, SD =
.15) when compared to the baseline (M = .70, SD = .12): t(11) =
3.303, p = .007. Task duration was not measured for this task.

5.3 Effects on Perceived Workload
The participants answers to the NASA-TLX questionnaire were
analyzed using the Wilcoxon Signed-Rank test and the raw NASA-
TLX scores. We report exact and not asymptotic p-values due to our
relatively small sample size [22].

5.3.1 Task 2: ‘Pattern Blocks’
• Decoder: significant differences were found for the combined

task load index (Z = -2.984, p = .006) where the AuRea (M
= 78.42, SD = 14.13) increased the perceived task load when
compared to the baseline (M = 53.00, SD = 15.11). No signif-
icant differences were found for mental demand (Z = -1.561,
p = .549), temporal demand (Z = -1.964, p = .065), overall
performance (Z =-.268b, p = 1.000), effort (Z = -1.140b, p =
.774), or frustration levels (Z = -1.729, p = .146). Significant
differences were found for physical demand (Z = -3.065, p
< .001) where decoders found interacting with AuRea (M =
14.17, SD = 3.41) more physically demanding than without (M
= .83, SD = 1.27).

• Encoder: no significant differences were found for the com-
bined task load index (Z = -.178, p = 1.000), mental demand
(Z = -.446, p = 1.000), physical demand (Z = -.155, p = .754),
temporal demand (Z = -1.592, p = .774), overall performance
(Z = -.670, p = 1.000), effort (Z = -.625, p = .549) or frustration
levels (Z = -.579, p = 1.000).

Figure 5: Performance results during the ‘Pattern Blocks’ (correctly
placed pieces / total number of pieces) and ‘Storyteller’ tasks (key
ideas retold by the decoder / key ideas retold by the encoder). *
denotes p < .05

Figure 6: Worry results (ratio between pre- and post-experiment
scores) from the encoder in the ‘Pattern Blocks’ task, across familiar
and unfamiliar pairs of participants (i.e. participants who did not know
each other before the start of the study). * denotes p < .05

5.3.2 Task 3: ‘Storyteller’
• Decoder: the AuRea negatively affected decoders’ combined

task load index (M = 55.33, SD = 11.35) when compared
to the baseline (M = 36.25, SD = 7.49): Z = -3.063, p <
.001. No significant differences were found for mental demand
(Z = -2.591, p = .065), temporal demand (Z = -1.543, p =
.125), overall performance (Z =-1.130, p = 1.000), effort (Z =
-2.242, p = .146), or frustration levels (Z = -1.940, p = .109).
Significant differences were found for physical demand (Z =
-3.064, p < .001), where the AuRea condition (M = 12.58, SD
= 5.32) was reported by the decoders to be more physically
demanding than the baseline (M = .83, SD = 1.99).

• Encoder: no significant differences were found for the task
load index (Z = -.132, p = 1.000), mental demand (Z = -.633,
p = 1.000), physical demand (Z = -.281, p = 1.000), temporal
demand (Z = -0.323, p = 1.000), overall performance (Z =
-.115, p = 1.000), effort (Z = -.403, p = .741), or frustration
levels (Z = -.604, p = 1.000).

5.4 Effects on Engagement, Distress, and Worry
We used the Wilcoxon Signed-Rank test to analyze participants’
ratio between pre- and post-experiment SSSQ scores during the
‘Pattern Blocks’ task (Fig. 6). As before, we report exact and not
asymptotic p-values.
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• Decoder: no significant differences were found on components
of engagement (Z = -.157, p = 1.000), distress (Z = .000, p =
.549), or worry (Z = -.356, p = .774).

• Encoder: no significant differences were found for compo-
nents of engagement (Z = -.711, p = .477) or distress (Z =
-.133, p = .894), but were found for worry (Z = -2.312, p =
.021). Further, a Friedman tests revealed significant differ-
ence for worry between familiarity groups (χ2(3) = 15.362,
p = .002). Encoders partnered with a participant they were
unfamiliar with (IOS = 1) experienced overall higher levels of
worry in both the baseline (M = 1.18, SD = .13) and AuRea
conditions (M = 1.53, SD = .30), when compared to encoders
paired with a familiar participant (IOS > 1): baseline (M =
.76, SD = .24) and AuRea (M = .969, SD = .104). In sum, all
encoders experienced higher levels of worry using AuRea.

5.5 Effects on Interpersonal Connection
We used the Wilcoxon Signed-Rank test to analyze participants’ ratio
between pre- and post-experiment IOS scores during the ‘Pattern
Blocks’ task. We report exact and not asymptotic p-values.

5.5.1 Task 2: ‘Pattern Blocks’
• Decoder: we found significant differences for interpersonal

connection (Z = -1.958, p = .050), where decoders reported
a higher increase in connection with AuRea (M = 1.66, SD =
.83) than without (M = 1.13, SD = .33).

• Encoder: we found significant differences for interpersonal
connection (Z = -2.113, p = .035), where encoders reported a
decrease in connection when the decoder was AuRea (M = .91,
SD = .22) compared to the baseline (M = 1.44, SD = .62).

5.5.2 Task 3: ‘Storyteller’
• Decoder: no significant differences for interpersonal connec-

tion were found (Z = -1.054, p = .292).

• Encoder: no significant difference for interpersonal connec-
tion were found (Z = -.272, p = .785).

6 DISCUSSION

6.1 System Use and Accuracy
All participants were quick to understand and memorize the color
model used on the system and rarely did they consult the printed
reference image with the color model. The high perceived accu-
racy of the system was first seen on the ‘System Validation’ task,
where participants relied strongly on AuRea information to infer
their partner’s emotional state. The significant higher accuracy on
this inference with higher use of AuRea might be related to the
Hawthorne effect, which led encoders to suppress visible emotional
reactions to the emotional stimuli and made it more difficult to read
the emotional cues in non-extreme emotional states or with encoders
that are usually less expressive. With these suppressed emotional
reactions, which are common in formal settings or between unfamil-
iar people, for example, AuRea provides a way to see beyond the
controllable layer of emotions. Nonetheless, the higher accuracy of
emotional understanding with the use of AuRea validates the first
research hypothesis (H1).

The level of familiarity was expected to impact the use of the
system, as unfamiliar people had less experience on decoding their
partner’s emotional state and were expected to rely more on the
system. This assumption was proven to be wrong on the sampled
group and might be linked with the quicker entrustment on the
system by the decoders that were familiar with their partners. The
familiar groups seemed to validate the AuRea visualization quicker
because they were able to better decipher their partner’s emotional
state without the system, thus, observing quicker and trusting more
strongly the accuracy of the system.

6.2 Effects on Performance
The effects of the proposed design on metrics of performance seem
to be task-dependent. On the ‘Pattern Blocks’ task, the increase of
performance with AuRea seem to validate the hypothesis presented
by Hogan et al. [16] that the more accurately a speaker can decipher
the emotional state of their listener, the more effectively can they
transmit the message, which in turn supports this study’s second
hypothesis (H2). Since trials with AuRea did not have a significant
higher duration, the increase in performance might be attributed
to the expected change in instructional style by the decoder. The
participants were asked if they felt any change in how they decided
to perform the task with the system, to which some participants de-
clared, substantiating the mentioned hypothesis, that AuRea helped
them understand behavioral patterns in their partner. Two partici-
pants noted that accessing the partner’s emotional state helped them
define the pace of the task, as they adapted to the partner’s nervous-
ness. Three participants reported that AuRea was not relevant for
their behavior during the task. One of them said they tried to abstract
the system from the task, as the considerable use of color was too
distracting. The other two declared that they believed the task would
not be affected by acknowledging the partner’s emotional state.

On the other hand, the decrease in performance on the ‘Sto-
ryteller’ task shows that the proposed design is not appropriate
for tasks involving the retaining of information. The part of the
Empathy-Effective Communication hypothesis that states that better
perspective-taking by the listener leads to better message apprehen-
sion was not observed on this study and, thus, our third hypoth-
esis was rejected (H3). From the participants’ statements, it was
clear that the system and the task setup promoted more complex
perspective-taking experiences, which made it a viable emotional
sharing tool for a pure social interaction, but its design was too
obtrusive for tasks that demand memorization. This insight should
lead to different design approaches that can be accessed without a
diversion of attention, such as opting for a slower color transition
and the removal of ripple velocity.

6.3 Effects on Perceived Workload
The increase of physical demand when using AuRea was expected,
as the video see-through setup provided a much lower resolution
(720p) of the physical environment and of the encoder. Some par-
ticipants found difficult the use of the VIVE headset and reported
eyestrain, as well as motion sickness, on prolonged tasks. This
limitation was then reflected on the answers for system usability
where 4 participants reported they had difficulty using the system.
The higher physical demand on the ‘Pattern Blocks’ than on the
‘Storyteller’ task might be related to the requirement for more dy-
namic vision target. On the ‘Storyteller’, the decoders had to focus
only on the upper body of the encoder, without needing to move,
while on the ‘Pattern Blocks’ task, the decoders had to diverge their
focus point from the encoder to the reference image often. With
the low FOV, 90°(H) x 60°(V), and the depth perception distorted,
since the Zed camera was about 6 cm away from the eyes, the higher
physical demand was correctly expected to become more evident on
the ‘Pattern Blocks’ task.

Tan et al. [35] reported an increase of perceived performance,
by both worker and instructor, when biofeedback was introduced
to the task, which was not observed on this study, even with met-
rics of performance increasing with the biofeedback. This might
be related to task characteristics, since the study by Tan et al. al-
lowed instructors to have access to the worker’s progression, thus
allowing for exchanges of instructor reassuring correct placement,
which might be correlated to final perceived performance. In this
study, perceived performance was presumed to be correlated, for the
encoder, to discernment of final pattern image and, for the decoder,
to the encoder’s confirmation of comprehensibility, characteristic
that were not presumed to be impacted significantly by AuRea.
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6.4 Effects on Engagement, Distress, and Worry
The AuRea condition showed no effect of the biofeedback to metrics
of engagement or distress for the encoder and the decoder, but an in-
crease of worry for the encoder. On the SSSQ, the worry component
is connect to statements of awareness of oneself as separate from
others (e.g. “I feel concerned about the impression I am making”)
and overall personal insecurity (e.g. “I feel self-conscious”). With
the unnatural over-exposure of an emotional sharing system, it was
expected higher levels of worry, as concealing increased nervous-
ness became a more difficult task. Moreover, the higher levels of
worry relating to groups with low IOS score is consonant with the
assumption that emotional exposure to unfamiliar partners will natu-
rally make participants more self-conscious of their own emotional
state. On the final questionnaire, when asked to rate the sentence “I
felt comfortable sharing my emotional state with the other person
through the AuRea system”, both participants from group 3, a low
IOS score group, stated they did not feel as much discomfort as they
would on real-world applications.

6.5 Effects on Interpersonal Connection
In our fourth hypothesis (H4), we excepted the interconnection be-
tween participants to increase, but this hypothesis was only partially
supported by the results, since decoders reported an increase in inter-
connection while the encoders reported a decrease in interconnection.
AuRea was able to achieve higher cognitive empathy from the de-
coder to the encoder, as revealed on the validation task, and this
increase of emotional understanding is presumed to have been trans-
lated into perceived interpersonal connection, as decoders reported
higher connection with the encoders while instructing them on the
‘Pattern Blocks’ task. As mentioned previously, decoders were able
to better understand the needs of the encoders while performing the
assembly task and to adapt their instructional style, better synchro-
nizing the two parties on the task. However, encoders reported lower
interpersonal connection on the same task, which, using the same
hypothesis, could mean that encoders lost emotional understanding
when the decoder was using AuRea, which shows a one-sided in-
crease of empathy that results on the other side’s lost of empathy.
The adaptation of the decoder’s behavior to the encoder’s needs did
not overpower, in terms of interconnection, the consequences of
removing some of the decoder’s important communication cues, like
gaze and facial expressions. This disadvantage could be managed by
replacing the video see-through with an optical see-through system
that would preserved the decoder’s communication cues.

6.6 Limitations and Future Directions
The main limitation of our experiments is their small sample size,
both for the emotion recognition training and for the final user study.
The main reason for this was of course the COVID-19 pandemic and
our strict recruitment policy (e.g., only participants who had received
both doses of the COVID-19 vaccine at least two weeks prior to the
start of the study were invited to participate). Collecting more data
to train would increase model robustness and allow for the use of
the system as a generalized emotion recognition model, instead of
the personalized model for the sample group constrained by, e.g.,
their age range. Moreover, a larger sample size would increase
the reliability of the self-reported metrics. One limitation observed
during the data analysis was how reliable the metrics of engagement,
worry and distress were on self-reported metrics. One aspect not
explored in our work was the emotional contagion phenomenon – a
normal consequence of cognitive empathy. In order to explore this,
future work would need to collect the decoder’s physiological data
as well in order to study physiological changes during the tasks and
emotional state synchrony between the pairs of participants.

Finally, with the validation of the system as a cognitive empathy
support tool, it would be important to study how the system could
facilitate social interactions for people on the autism spectrum or

with similar conditions that affect the capacity for cognitive empathy,
as these conditions make the reading of communication cues more
difficult [20]. For settings with an instructor-student dynamic, as
in a classroom scenario, the AuRea system, as well as previous
systems of emotional sharing, seem to have evident benefits when
the instructor can access the student emotional state. It would be
of value to expand the work to a scenario closer to a classroom
setting with multiple encoders/students and to understand the design
implications of an increased space of physiological information and,
more importantly, what technique of self-focus would need to be
implemented to reduce the level of distraction of an augmented space
of such dimensions (e.g., the gaze-assisted tool presented in [28]).

7 CONCLUSION

On this project, we developed a emotional recognition DNN model,
which served to infer emotional states from ECG data and created
an AR system to showcase emotional state through color and move-
ment. We evaluated, in a face-to-face setting, the effect of this
emotional sharing system in task performance, interpersonal con-
nection, cognitive load, engagement, distress and worry. A user
study was conducted where we validated the system as an effective
tool for the increase of emotional understanding and then compared
a baseline variant with a system variant during two collaborative
task relating to instruction-giving and memorization. Following a
within-subjects design with 6 pairs of participants, we found that the
instruction-giving task saw an increase on task performance while
the memorization task saw a detriment to performance. The system
introduced increased worry for the people disclosing physiological
data, where participants paired with participants there were not fa-
miliar with reported higher levels of worry than participants who
were paired with friends or acquaintances. The system increased
interpersonal connection for the participant accessing the other’s
emotional visualization but decreased interpersonal connection for
the participant showcasing the emotional state. We discussed the
implication of these finding and suggested future directions for emo-
tional sharing system in face-to-face settings.
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